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Observation of the concurrent creation and annihilation of periodic orbits in a nonlinear RLC
circuit
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We have numerically investigated and experimentally demonstrated the presence of antimonotonicity: the
concurrent creation and destruction of periodic orbits in a driven nonliRé&2 circuit. A simple manifesta-
tion of antimonotonicity is the formation of dimples in a high iterate return map. The evolution of such dimples
allows for both contact making and contact breaking homoclinic tangencies of the stable and unstable mani-
folds. Both numerical and experimental return maps unequivocally exhibit the formation of such dimples. The
experimental time series were captured using a 16-bit resolution digitizer allowing for a faithful computation
of the high iterate return mapgS1063-651X96)11610-X|

PACS numbdss): 05.45+b

I. INTRODUCTION mechanism is known adimple formation In analogy to the
two-dimensional story, the formation of dimples signals the
The logistic map has been established as the paradigm fe@oncurrent creation and destruction of periodic orbits.

studies of the period doubling route into chaos. Its behavior There are a large number of systems that followiran
is monotonein the sense that the created orbits are nevererseperiod doublind 7] route out of chaos after arriving at
destroyed through reversals of period doubling cascade#bat state through the period doubling route. Historically, the
[See Fig. 18).] In contrast, a system that can undergo anfirst systems showing this effect were driven nonlinear elec-
infinite cascade of orbit creating bifurcations concurrentlytr_on'c resonators. Here one varied the characteristics of the

with an annihilating cascade of reverse bifurcations on conSinusoidal driving wave such as a dc compor{@st10, the

tinuous variation of a chosen system parameter has been dé%?t%?jznCngfn%%%T;?:;%ﬁ%ll]z’] Or_?ﬁéh tgglgfsq:ve%ésggnzm'

ignated antimonotong[1]. Antimonotonicity is due to tan- P ; . ; ! : .
gential intersections between the stable and unstabl‘éhemICaI reaction also_d|splaygd ewdencg_ of this behavior
when the chemical residence time was utilized as a control

rnanﬁolds of a system.'A qne-d|men3|onal cubic map, Shov.vrbaramete[lS]. An elegant observation of a forward and in-
n F'g'.l(b)’. displays f[hls_kmd of phenomenpn_. on compart-y,erse cascade of period doublings was recorded using a car-
son with Fig. 1a), this diagram shows a distinctly chaotic 1, gigyide laser whose optical cavity length was modulated
region that was initially born through period doubling andy 4] Bifurcation diagrams were obtained as a function of the
saddle node_ bifurcations and then subsequently destroy%q“p“tude of modulation. A neodymium doped fiber laser
through the inverse process. pumped with a laser diode has shown a period doubling cas-
Antimonotonicity haS been explored in tWO'dimenSional cade a|ong with inverse period doub“h@] In this experi_
systemg1,2] and one-dimensional map3-5]. For the two-  ment, the pump current was modulated sinusoidally. The bi-
dimensional case, Kan and Yorke have proven antimonotcfurcation parameter was the frequency of the pump. A
nicity occurs at an existing nondegenerate homoclinic tansemiconductor laser with optical injection displayed evi-
gency of stable and unstable manifolds. Here the requirememfience of inverse period doublifi@6]. In this case, the injec-
of nondegeneracy specifies that tredocityof the two mani-  tion strength serves as the bifurcation parameter. However,
folds with respect to the control parameter be nonzero in thigecause of the fast time scales, measurements for this system
region. When the system resides in this type of state, hoare limited to the Fourier domain.
moclinic tangencies will not only be created, but also de- Numerical studies have demonstrated this structure in the
stroyed as the parameter is varied. Such events are importabuffing equation[17] and the Van der Pol oscillatdng].
for they lead to period doubling and saddle point bifurcationsThe control parameter in both studies was the frequency of
[6]. While the making of a homoclinic tangency can be as-modulation in the driving term. The carbon dioxide laser
sociated with the creation of orbits, its counterpart incites thenodel used in Ref.19] exhibits a single forward and inverse
destruction of these orbits. Antimonotonocity is the manifesperiod doubling as a function of the detuning between the
tation of these continuously occurring events. While no proofcenter of the emission line and laser cavity. A model for an
yet exists for the one-dimensional case, Dawson, Grebogerbium doped fiber las¢20] has also shown inverse period
and Ko@k showed that the evolution of a high iterate returndoubling when the concentration of erbium ion pairs in the
map makes and breaks homoclinic tangendi®s This fiber core increases. A model of magnetoconvection under-
goes the forward cascade into an aperiodic state followed by
the inverse process as the Rayleigh number is incrd@4¢d

:Electronic address: newell@hpruby.plk.af.mil Similarly in maps, the Bier-Bountis magp82], Henon map
iElectronic address: kovanis@xaos.plk.af.mil [3], Gaussian map9], and different versions of the cubic
Electronic address: tom@photon.plk.af.mil map [4,5,23 possess the property of forward and inverse
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T S T A R AT AR ORI AR shown in the logistic map. Only period doubling
0 32 2 . 36 A > and saddle point bifurcations can be observed.
L5 e e e e T Odd period orbits first begin to appear at the ac-
) cumulation point\ =\~ 3.679.(b) The destruc-
tion of previously created orbits through inverse
period doublings occurs in the map,

Xns1=X-—1.872%,—\ as\ increases.
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cascades making them candidates for the presence of antien VI summarizes our main findings. In the Appendix we

monotonicity. present details about thRL C circuit model.

In spite of the numerous experimental observations of the
concurrent cascades, the mechanism that incites this behav- || THE DIMPLE FORMATION MECHANISM
ior has yet to be demonstrated. Our motivation in this paper IN A ONE-DIMENSIONAL MAP

is to investigate this evidence of antimonotonicity. We ) o - o

present numerical studies and experimental results for the Curiously, it is more difficult to establish rigorously a

case of a driven nonlinear electronic resonator. For this systonclusion concerning antimonotonocity for a one-

tem, a return map generated from successive piercings of @mensional map than it is for a two-dimensional one. The

Poincafesection is approximately one dimensional. As a re-féason is that the one-dimensional map must be noninvert-

sult, we focus on the response of the return map to variation®!€ for chaotic dynamics to occur. However, Dawson, Ko-

in a system parameter. We show that the making and breaak, and Grebodi5] have presented a geometric mechanism

ing of homoclinic tangencies as seen in topologically similarthat demonstrates contact making and contact breaking ho-

one-dimensional maps occurs in the resong2di. This es- mocllnlc tangencies for scalgr maps. This mechgnls_m is a

tablishes that the same mechanism responsible for antimongimple formation that occurs in the structure of a high iterate

tonicity in one-dimensional maps also occurs in low-€turn map. o _ _

dimensional dynamical systems. ~ We will outline this idea in this section. As a simple yet
This paper is organized as follows. In Sec. Il the geometjns'gru_ctlve review of a homoclinic tangency, consider the

ric mechanism of dimple formation is outlined. Numerical logistic map,

results showing the dimple formation in a drivet. C circuit

are presented in Sec. Ill. In Sec. IV, the experimental setup is F(Xn) =AXn(1=Xp), 2.

described. In Sec. V, the experimental observation of

dimples in high iterate maps is presented. These corroboratg the accumulation point =\.~3.679.[See Fig. 1a) at

the numerical results and display similar behavior to the type\..] At this interesting point the upper and lower chaotic

of one-dimensional maps that exhibit antimonotonicity. Sec+egions spawned from each branch of the period-2 orbit
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FIG. 3. A dimple forms in the fifth forward iterate of the map,
Xns+1= aXy(3c2—x2)+0.099 €=0.95)[5]. Plotted is the map for
a=1.019 395(a), «=1.0194(b), anda=1.019 405(c). These lo-
cal extrema make and break tangential contact with preimages of
the fixed point. This process generates concurrent creation and de-
03 0.4 0.5 0.6 0.7 0.8 0.9 struction of periodic orbits.

merically substantiated that the occurrence of two critical
points simultaneously residing in a chaotic attractor are, in
point maps into the fixed point whose third preimage is indicated byge.neral’ sufficient for anjtlmonotonlglty. The tW.O critical

) . ! o points allow contact breaking homoclinic tangencies that re-
the horizontal line. At =3.65 (lower ploy, the homoclinic tan- erse the process of the contact making homoclinic tanaen
gency has not yet occurred while Xt 3.7 (upper ploj two trans- Vers c pd ES di . | ' ? nt gen-
verse homoclinic points exist. The inset is an enlargement of thé&'es. Lonsider the one-dimensional scalar map,
region around the critical point.

FIG. 2. A contact making homoclinic tangency occurs in the
logistic map at\~3.679 (middle plo). At this value the critical

F(Xn,\)=AXn(3¢%—x2)+0.099, 2.3

merge. Here according to Sharkovski's orderi@§], all or- where c=0.95, and the critical points are;=0.95 and

bits Who_se peno_d is a power of 2 have been created and thce2= —0.95[5]. A bifurcation diagram of this map is shown
odd periods begin to appear.

o in Fig. 1(b). The map itself is displayed in the inset of Fig. 3.
be|1(—) Cve Logljzﬁlcar:;zggmp:gne;?]clzc\;\/rnt?r:e; Vazluii)‘gfi?g;‘ir:a We want to observe the mapping of the critical pomt, and
close hpqof ’the regio\gecaround the cri%i.call poiMt = 0.5 the evolution of the neighborhood surrounding this point as

= 1_ . .
[dF(x,)/dx,=0x,=¢,,C,]. The horizontal line indicates we vary . We can expect that here, and in general, after

; - ! : some number of iterates one critical poief, will map into
;\hffecond preimagep~0.920, to the fixed pointp, when the other,c,, i.e., F!(c{,\¢)=C,. That iterate is 4 when
=\¢,

A=\.~1.019 398F*(c,,\¢) =C,. Furthermore, after some
F2(p,Ao)=Xs. (2.2  additional number of iterations, will map into the vicinity

of the fixed point. Both statements are due to the ergodic
Note that since her@=(A—1)/\, increasing\ causes an nature of trajectories in a chaotic attractor. Analogously to
upward movement irp and a corresponding shift im,.  the logistic map, homoclinic tangencies will occur for this
However, this displacement is relatively small compared tanap as it evolves.

the shift in the map. For the map computed\at\ ., there The stage is now in place for the formation of dimples.
is no contact between the preimageptand the map. When We investigate the j(+1)st forward return map(here
A=\, the map makes tangential contactawith the pre- j=4) in the neighborhood of the critical poiot. Figure 3

image line. At this point, a homoclinic tangency has occurrecshows the fifth forward iterate of the map aroued for
since F2(c;,A¢)=p. An infinite number of orbits follows three values ok. At this iterate a quartic critical point exists
from this contact. For\>\., two transverse homoclinic atc; andA=X\.. This can be understood by considering the
points exist. Now the limitation of unimodal maps is that derivative of FI*1 with respect tox at x=c;. As \ is in-
only contact making homoclinic tangencies occur. The single€reased above., ¢, no longer maps directly into,. The
critical point constrains the motion of the map and its for-point dimples inwards creating three extrema from the one
ward iterates to always evolve similarly to that seen in Fig. 2extremum. In Fig. 3 forA=1.019 395[the upper curve
Correspondingly orbits are only created. marked (a)], the map has a parabolic type shape. For
How then does antimonotonicity occur in a one-A=1.0194 [the middle curve marked (b)] and
dimensional map? Dawsoet al. [4,5] postulated and nu- X\ =1.019 405the lower curve, markegt)], the critical point
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inflects upwards clearly forming a dimple. There are an in-
finite number of preimages to the fixed point between the 22
middle and lower curves of Fig. 3. As the map evolves, the  20f
outer two extrema make homoclinic tangencies with these g 1sf
preimages. However, the inner extremum breaks contact? 1ef
with these preimages. Antimonotonicity is the result of this E
display of contact making and contact breaking homoclinic
tangencies.

(dimen:
I

Maxima of I(t)

Ill. NUMERICAL INVESTIGATIONS
OF DIMPLE FORMATION IN THE RLC CIRCUIT

A large class of physical systems can be described by
one-dimensional maps. Consequently, the observation of the
dimple formation mechanism in these particular maps is an
important step in providing evidence for the existence of
antimonotonicity. In this section we concentrate our effort on
a nonlinear electronic resonator. Specifically, our aim is to
generate a map from a numerical model of the resonator and
observe whether this map displays the dimple formation
mechanism as described above.

This resonator is a sinusoidally driven electrical circuit
composed of @ —n junction diode in series with an inductor
and a resistof26,27. A third order ordinary differential
equation model is derived by considering the diode as a non-
linear capacitor in parallel with a nonlinear resigit®8]. The
dimensionless equations of the model are

s by e b M b b L L
-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

V, (dimensionless)

Maxima of I(t) (dimensionless)

V, (dimensionless)

i(T) =Vgsin(7)—V(7)— Bl(7)+Vyq, (3.2 FIG. 4. (a) A prolific display of bifurcation processes is mani-
fested in this numerical bifurcation diagram of the nonlinear elec-
V(T)=G(I V), (3.2) tronic resonator. The maxima of the resonator current are plotted

versus an applied bias voltage) The first chaotic regime i) is
expanded. This chaotic region is a candidate for the observance of

7=2mf. 33 poth contact making and breaking homoclinic tangencies.

The pertinent terms ark, the current through the resistor, period doubling cascade and exited through the inverse pro-
V, the voltage drop across the diode, ang a bias voltage cess. While this diagram is visually indicative of antimono-
that serves as the bifurcation parameter. The other terms atenicity, we investigate this particular region in order to sub-
defined in the Appendix. stantiate the evidence.

A computed bifurcation diagram of the current peaks We desire to determine if contact making and contact
taken asV, is added to the driving wave is presented in Fig.breaking homoclinic tangencies are occurring. In order to do
4. Heref=70 kHz andV,=2.8 (dimensionless The dia- so, return maps are extracted for various value¥ pf The
gram displays three bands of chaotic regions. Originally in gvolution of these maps is studied analogously to the cubic
period-1 orbit, the resonator period doubles into a chaotignap above. Figure 5 is a first return map of the current peaks
regime atVy=—2.62, then inverse period doubles to a[the maxima ofl versusl(n+1)], taken forVy=—2.6. Itis
period-2 orbit atVy=—2.0 V. BetweenVy=—2.62 and reminiscent of the logistic map except for the folded inward
V4= —2.0, the resonator has inverse period doubled out o$ection on the right-hand side. Hence the map has two criti-
chaos to a period-4 orbit aty= —2.36, then back into and cal points. On closer inspection there is a degree of structure
out of other regimes. indicative of a higher dimensional system. A calculation of

The resonator undergoes a period doubling cascade bathe Lyapunov exponents gives a spectrumigf=0.055,
into chaos onc# increases above 2.0 V. This is followed  A,=0, and\3= —0.234[29]. From these, the Kaplan-Yorke
by a saddle node bifurcation into a period-3 orbit. Ordinarilydimension is 1.24.
one would expect the system to bifurcate into period-6 and Marked on Fig. 5 are points; throughXs that show the
beyond. However, here an apparent reversal of a tangent Hierward iterates o€,. This point is immediately mapped into
furcation trips the resonator back into a chaotic regime. Ithe second critical point,. After two more iterates; maps
finally returns to a period-1 orbit through reverse bifurca-to X5 which is quite near the unstable fixed point of the map,
tions. p. We therefore expect that for some value of offset, a ho-

The dominant region of interest is the first band of chaoticmoclinic tangency will occur as; is mapped intop. Ac-
behavior. This is shown in Fig.(d). A myriad of forward  cording to the discussion concerning the cubic map, a dimple
and inverse period doublings along with various periodicprocess should begin on the second iterate return map at the
windows are shown in this figure. Betwedly=—2.64 and  appropriate value of/4. This dimple formation will also be
—2.48 a chaotic band exists which was entered through displayed in higher iterate return maps. Therefore, we will
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upper critical pointc,. Three iterates later, the mapping takes us to " - ry) -
Xs, which is in the vicinity of the fixed pointp. As Vg is varied, Maxima of I(n) (dimensionless)

X, will map to p creating a homoclinic tangency. ] ] )
FIG. 6. (a) The numerical fifth return map of the maxima of

1(n) versusl (n+5) whenV4=—0.885 V. The boxed area focuses
attention on the critical point. An enlargement of the boxed area is
shown in(b). In addition toV4=—2.604 V, maps are plotted for
V4=—0.89 V andVy=—0.877 V. The three maps show the mak-
ing of a homoclinic tangency.

look at the evolution of the second return map experimen
tally below and will study numerically how the critical point
is mapped into the vicinity op in a fifth return map here.

A fifth return map withVy= —2.6 is shown in its entirety
in Fig. 6(a). In the vicinity of the critical pointimarked by
the boy, the map has a parabolic type curve. Figufie) & a
close-up of the boxed area in Fig(ah In addition to the
map atV4=—2.60 (the central set of points maps at internal resistance of 368 and a 330} resistor in series
V4= —2.62 (the upper set of pointsand V4= —2.58 (the with the other two components. The resonator is dc biased
lower set of pointsare also plotted. The horizontal line in and sinusoidally drivenVy+Vsin 2rft, by a Hewlett-
the graph indicates the position of the fixed point. AtPackard programmable function generatetP332%\). A
V4= —2.62,c, does not yet map into the fixed point. How- LHO002 line driver buffers the function generator from the
ever, a contact making homoclinic tangency is about to occufésonator and provides a spectrally pure sinusoidal drive
when V4= —2.60. Finally atV,=—2.58 the critical point Wave. The voltage drop across the resistt), is amplified
maps beyond the fixed point and transversal homoclini®y & low noise Stanford Research Systems SRS560 preamp-
points exist on both sides Cd]_. The bifurcation diagram, lifier then dlgltlZEd with a 16-bit resolution 1 megasample
Fig. 4, shows the creation of orbits as the system moves intBer second Analogic FAST16 digitizer. A personal computer

a region of fully developed chaos. coordinates the equipment and acquires the incoming data.
Bifurcations out of chaos can be seen further along Fig. 4Finally, we thermally stabilize the resonator at230.05°C
A fifth return map forVy4=—2.54 is shown in Fig. @. inadewar flask. This minimizes the influence of the ambient

While it has the same general look as Figg)note that the temperature on the bifurcation points of the resonator.

boxed region around the critical point is dimpled inwards. We probe the dynamics of the resonator by settiggnd

This area is enlarged in Fig(B). Again three maps are plot- then stepping/y while recording time series at each 1 mV
ted, but now as the offset is increased, the maps dimple aniicrement. The driving frequency, is always kept constant
recede upwards. Fafy= —2.550 points straddling the criti- at 40 kHz. Long 16-bit resolution time series 9{t) are

cal point make contact with the fixed point. The map retreat@cquired, and points in the vicinity of the maxima are ex-
upwards as the critical point inflects upwards. Attracted. A cubic polynomial curve fit scaled to the digitizer
V4= —2.532 the homoclinic tangency is breaking. Finally resolution is performed to approximate the true maxima. As
whenV,= —2.526 there is no local contact. Figure 4 showsa last step in data processing, we histogram the peaks in bins
the destruction of orbits as the resonator period halves tdased on the resolution of the digitizer. This provides a sta-

wards the period-4 orbit. tistical look at the relative density of peaks. Plots of the
resulting bifurcationsV (t,ea) VS Vg, are then grey scale
V. EXPERIMENTAL SETUP coded to represent the density of occurrence. In spite of this

effort, the inevitable noise in the entire arrangement coupled
Our experimental setup shown in Fig. 8 is composed of awith the consequences of the universal scaling law for period
1N4004 silicon rectifier diode, a 47 mH inductor with an doubling bifurcations tends to harness the possibility of di-
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rect observation of high period orbif80].

V. OBSERVING THE FORMATION OF DIMPLES

Bifurcation diagrams of the maxima ®f(t) versusV for

FIG. 9. Experimental bifurcation diagrams for different levels of
drive amplitude(a) At Vy=0.3 V a period-2 bubble forms. Below
this value, the resonator never bifurcat@s). At V,=0.5 V the
f/2 bifurcation point has shifted downwards and a period-4 orbit

four values ofV, are shown in Fig. 9. In all cases, when appears(c) Two regions of bubbling have appeared as well as a
V4 is low, the diode is predominantly reverse biased ancheriod-8 orbit by the timé/,=0.75 V.

il

|

A

Driver

I
I

il

Pre-Amplifier

essentially acts as a high impedance device. At the other end
of the scale, the diode is mostly forward biased and tends to
act as a linear element. This explains the period-1 orbit for
both low and high values of dc offset. In the intermediate
regions depending on the value ¥f, the motion of the
charge carriers in the diode creates the rich dynamical fea-
tures. At very low drive amplitude¥ oscillates in a period-

1 orbit regardless of the dc offséf.

At V,=0.3 V [Fig. 9a@)], a period doubling bifurcation
occurs whenvVy=0.189 V. A strongf/2 frequency compo-
nent appears in the Fourier spectrum. The system remains in
this state untiVy=0.239 V, at which point an inverse period
doubling occurs. The resonator returns to the period-1 orbit
and thef/2 frequency component attenuates almost com-
pletely. We refer to this as aff2 bubble[22,9].

When V,=0.5 V [Fig. 9b)], after thef/2 period dou-

FIG. 8. The experimental setup is organized around the sinusokling, a second period doubling creates &4 bubble at
dally drivenRLC circuit. Data are acquired with a 16-bit resolution V4q=0.17 V. As we increas#/y, two inverse period dou-
1 megasample/sec digitizer and stored in the computer. The sinlelings return the resonator to its period-1 state. At

wave generator and digitizer are controlled by the computer.

V(,=0.75V, Fig. 9c), the cascade continues with the appear-
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ance of anf/8 bubble atv4=0.16 V. We also find that an- furcation[7] occurs latching the resonator into &3 region.
other f/4 bubble appears af;=0.23 V. Bifurcation dia- An f/6 orbit is subsequently born at;=0.245 V. Forward
grams taken for increasing values of the drive amplitud€followed by inverse period doubling bifurcations occur at
would show a series of forward and inverse bifurcations ochigher values oVy. Then atVy=0.295 V, an inverse tan-
curring in bands until chaotic states are reached. These pergent bifurcation brings the resonator into a chaotic zone. It
odic bubbles are not limited to the resonator. They can alsthen inverse period doubles into the limit cycle at
be observed in mag®3,22,31,9 and fiber laser§32]. V4=0.305 V.

Figure 1@a) displays the accumulation of bubbling that  The first chaotic region is expanded in Fig.(40 The
has led to the chaotic bands. It is quite similar to Fig. 4structure of the bifurcation diagram indicates that making
except for three bubbles that have formed betweerand breaking of homoclinic tangencies may be occurring.
V4=0.25 V andV4=0.3 V. As in the previous bifurcation We wish to investigate this region and experimentally ascer-
diagrams, the resonator commences with a limit cycle osciltain if a dimple formation mechanism is responsible. Figure
lating atf, then undergoes a visiblg2, f/4, andf/8 period  11(a) shows a first return map taken ¥g=—0.06 V. It is
doubling atV4=—-0.195V,—0.106 V, and—0.090 V, re- very similar to the numerically computed map, Fig. 5. The
spectively. The resonator enters a chaotic region that ineentral critical pointc,, maps directly into the second criti-
cludes forward and reverse pitchforks. This particular regiorcal point. In accordance with the dimple formation mecha-
betweenVy=—0.09 V and—0.04 V is shown in Fig. 10. nism, a quartic critical point at; will occur for the second
The resonator period doubles into chaos and then appearsiterate return map, maxima ol(n) vs maxima of
inverse period double abowg=—0.050 V. It subsequently V(n+2). Consequently we expect to see the beginning of
undergoes a tangent bifurcation\4=—0.042 V and then dimpling in a second return map.
undergoes a series of period doublings followed by inverse Figure 11b) is an experimental second return map taken
period doublings into a period-4 orbit abovg=—0.031V. when V4=—-0.057 V. Focus on the boxed region. Figure
As V, increases above 0.0 V, the system inverse period1(c) shows a close up of the region of points surrounding
doubles back into ari/2 region. Another period doubling c¢; for V4=-0.064 V, —0.061 V, and—0.055 V. The
cascade commences wheQ=0.132 V. This cascade con- horizontal line designates the location of the second preim-
tinues into a chaotic regime. Af;=0.186 V, a tangent bi- age of the fixed point. A¥ is increased, the map pushes
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FIG. 11. First(a) and secondb) return maps of the maxima df(t). (a) This map is indicative of one-dimensional maps with two critical
points: an essential requirement for dimple formation. In the second returnlopaiie neighborhood of points surrounding the critical point
(boxed regionis studied in(c) and(d) for dimple formation(c) As V4 is increased from-0.064 V to— 0.055 V the map pushes downwards
to the second preimage of the fixed pditite horizontal ling Initial contact with this line shows a contact making homoclinic tangefwy.
As V4 continues to increase the map dimples upwards and inflects inwards breaking an established homoclinic orbit.

downwards towards this point until it roughly makes contact VI. SUMMARY
at V4q=—0.055 V. This is a strong indication of the contact
making homoclinic tangency. Correspondingly, the bifurca-
tion diagram, Fig. 10, displays a region of orbit creation.
We incrementVy and again extract return maps. These
are quite similar to Fig. 1&) and (b) except in the boxed
region. This area is enlarged in Fig. (il Maps at
Vy4=-—0.051 V, —0.047 V, and—0.045 V are displayed.
Here the map begins to recede upwards and inflects inward
At V4= —0.051 V points straddling; make contact with the

The substantial number of physical systems that exhibit
both forward and inverse period doubling cascades moti-
vated our study of antimonotonicity. We were specifically
interested in observing the mechanism that incites antimono-
tone behavior. Our investigation focused on a driven nonlin-
earRLC electrical circuit. This particular system has a long
history of study. Though it is experimentally simple to con-
gtruct, it displays practically all the processes one normally
) associates with the study of nonlinear dynamics and chaos.
preimage. But ~when V4=-0.047 V followed _ by _ Numerically, we computed bifurcation diagrams as a
Vd:. —0.045 V the map no longer makes contact with th'_sfunction of an added bias voltag¥, (see Fig. 4 These are
preimage. This indicates the contact breaking homocliniG, gyong qualitative agreement with experimental results,
tangency. In this region, the bifurcation diagram shows thq:ig. 9, across a large parameter space. They display a com-
destruction of orbits as the resonator reverse bifurcates tcblex bubbling process, including forward and reverse pitch-
wards a period-4 orbit. forks. First return maps, extracted from one particular cha-

On comparison of this dimpling process with that of the gtic regime in the bifurcation diagram, are similar to the
cubic map, Fig. 3, we find that the process is not truly idenqogistic map but possess two critical points. This is a conse-
tical. This arises because of the simple nature of the bifurcaquence of the damped nature of the resonator, which pro-
tion parameter), in the cubic map. For the resonator, the duces an approximately one-dimensional attractor. As the re-
role of the bias voltage is more sublime. The return mapurn map evolves across the chaotic band, the motion of its
slightly rotates a¥4 increases and it causes an asymmetry incritical points make tangential contact with preimages of the
the dimple. Nevertheless, it is clear that the return map of théixed point establishing a homoclinic tangency. We next
resonator will make and break contact tangentially with pre-studied a fifth return map in order to observe the evolution of
images to the fixed point of the map. These figures showhe critical point in the vicinity of the fixed point. As we
solid evidence of the existence of antimonotonicity in theincrease/y, the critical point dimples inward and the map in
RLC circuit. this vicinity reverses its direction of motion. The dimpling
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process leads not only to contact making homoclinic tangen- TABLE |. Parameter values.

cies but also to contact breaking homoclinic tangencies. This

is because the local extrema make and break contact with 17 m 0.38

preimages of the fixed point. This concurrent process is th& 0.0215 a 7.69

hallmark of antimonotonicity. by 0.384 Y 0.275
Experimentally an electrical circuit possesses a humber af, 0.31 (o} 5.16

advantages over an optical or chemical system. One has 0.078

much greater control over many of the parameters which
influence the behavior. In particular, by controlling the tem- ) , . i i

perature, we were able to place dRitC circuit in a regime The dynamical equations in _d|menS|onIess units are shown
that was less noisy and high periodic orbits were more easilf€/0W. They are expressed in terms of a currén@and a
captured. We were then able to generate bifurcation diavotage drop across the diodé,

grams and return maps. These diagrams are highly dependent dl .
on the amplitude of the drive signal. For small amplitudes, d_T:VOS'n(T)_V_BI +Va, (A1)
the resonator will always reside in a period one orbit. When dv
the drive amplitude is larger, bubbles of periodic orbits occur —=G(1,V), (A2)
in the bifurcation diagram. As the amplitude is increased, dr
these bubbles expand into bands of chaotic regions indicativ@here
of antimonotone behavior. For the last case, second return | — y(e?V—1) 1
maps displayed the formation of dimples\4gincreased. G(l,V)= v — If V<z, (A3)

The result of our investigation is evidence that homoclinic cy[e® e (1=V) 1] 2
tangencies are made and broken through a dimple formation | —y(e?V—1) _ 1
process analogously to the process that occurs in a one- G(I,V)= (b, +mV) if VBE' (A4)
dimensional map that possesses two critical points residing cq. e+ czb—
in its chaotic attractor. Since a number of physical systems i 1
can be modeled by such maps, a dimple formation process g&hd finally
likely to occur there as well. dr

azzq-rf. (A5)
ACKNOWLEDGMENTS

The drive amplitudeV,, frequencyf, and dc offsetV
The authors would like to thank Celso Grebogi and Ying-define the pertinent parameter space. The other parameters
Chen Lai for encouragement through the course of this workelate to the characteristics of a IN4004 diode and its oper-
and helpful discussions. Also we wish to thank R. Kalmusating temperature. Experimentally, we find that the proper-
and R. Marquez for technical assistance. Additionally T.C.Nies of diodes vary widely not only from one to another but
would like to thank the National Research Council for sup-2lSo from one day to the next. As a result, the parameter
porting this work. values found in Table | are generic for the 1N4004 diode.
For our numerical investigation, we used a fourth order
APPENDIX Runge-Kutta integrator. The integration step size for this
work was set at 3000 steps/cycle. The bifurcation starts at a
The model of the resonator follows from considering thedc offset that places the resonator in a periodic orbit. For the
diode as a nonlinear resistor and capacitor and then applyinfiyst value ofV, the initial conditions are arbitrary and 2000
Kirchoff's laws to the circuit[28]. Its nonlinear resistance time units are integrated to find the attractor before peaks are
follows from the familiarl-V curve found in rudimentary recorded. Subsequently the final integration result for the
electronics texts. The nonlinear capacitive properties follownth offset is used as the initial conditions of the#1)st
from considering the effect an ac signal would have on thesalue. Then only 500 time units are integrated to find the
transport carriers in the semiconductor material and their reattractor. This is for speed and also assumes that the dc offset
combination around thp-n junction. The result is that cha- increment of 0.001 is small enough so that the initial condi-
otic behavior arises when the carrier transport times are relaions of the integration are always very close to the attractor.
tively long. Such is the case for this particular family Peaks of the current through the resonator are extracted from
(1N400X) of rectifier diodes. In contrast, fast switching di- a computed time series and used to create the return maps
odes do not appear to display chaotic behavior in this circuitand bifurcation diagrams.
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