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We have numerically investigated and experimentally demonstrated the presence of antimonotonicity: the
concurrent creation and destruction of periodic orbits in a driven nonlinearRLC circuit. A simple manifesta-
tion of antimonotonicity is the formation of dimples in a high iterate return map. The evolution of such dimples
allows for both contact making and contact breaking homoclinic tangencies of the stable and unstable mani-
folds. Both numerical and experimental return maps unequivocally exhibit the formation of such dimples. The
experimental time series were captured using a 16-bit resolution digitizer allowing for a faithful computation
of the high iterate return maps.@S1063-651X~96!11610-X#

PACS number~s!: 05.45.1b

I. INTRODUCTION

The logistic map has been established as the paradigm for
studies of the period doubling route into chaos. Its behavior
is monotonein the sense that the created orbits are never
destroyed through reversals of period doubling cascades.
@See Fig. 1~a!.# In contrast, a system that can undergo an
infinite cascade of orbit creating bifurcations concurrently
with an annihilating cascade of reverse bifurcations on con-
tinuous variation of a chosen system parameter has been des-
ignatedantimonotone@1#. Antimonotonicity is due to tan-
gential intersections between the stable and unstable
manifolds of a system. A one-dimensional cubic map, shown
in Fig. 1~b!, displays this kind of phenomenon. On compari-
son with Fig. 1~a!, this diagram shows a distinctly chaotic
region that was initially born through period doubling and
saddle node bifurcations and then subsequently destroyed
through the inverse process.

Antimonotonicity has been explored in two-dimensional
systems@1,2# and one-dimensional maps@3–5#. For the two-
dimensional case, Kan and Yorke have proven antimonoto-
nicity occurs at an existing nondegenerate homoclinic tan-
gency of stable and unstable manifolds. Here the requirement
of nondegeneracy specifies that thevelocityof the two mani-
folds with respect to the control parameter be nonzero in this
region. When the system resides in this type of state, ho-
moclinic tangencies will not only be created, but also de-
stroyed as the parameter is varied. Such events are important
for they lead to period doubling and saddle point bifurcations
@6#. While the making of a homoclinic tangency can be as-
sociated with the creation of orbits, its counterpart incites the
destruction of these orbits. Antimonotonocity is the manifes-
tation of these continuously occurring events. While no proof
yet exists for the one-dimensional case, Dawson, Grebogi,
and Koçak showed that the evolution of a high iterate return
map makes and breaks homoclinic tangencies@5#. This

mechanism is known asdimple formation. In analogy to the
two-dimensional story, the formation of dimples signals the
concurrent creation and destruction of periodic orbits.

There are a large number of systems that follow anin-
verseperiod doubling@7# route out of chaos after arriving at
that state through the period doubling route. Historically, the
first systems showing this effect were driven nonlinear elec-
tronic resonators. Here one varied the characteristics of the
sinusoidal driving wave such as a dc component@8–10#, the
frequency of modulation@11#, or both the frequency and am-
plitude of modulation @12#. The Belousov-Zhabotinski
chemical reaction also displayed evidence of this behavior
when the chemical residence time was utilized as a control
parameter@13#. An elegant observation of a forward and in-
verse cascade of period doublings was recorded using a car-
bon dioxide laser whose optical cavity length was modulated
@14#. Bifurcation diagrams were obtained as a function of the
amplitude of modulation. A neodymium doped fiber laser
pumped with a laser diode has shown a period doubling cas-
cade along with inverse period doubling@15#. In this experi-
ment, the pump current was modulated sinusoidally. The bi-
furcation parameter was the frequency of the pump. A
semiconductor laser with optical injection displayed evi-
dence of inverse period doubling@16#. In this case, the injec-
tion strength serves as the bifurcation parameter. However,
because of the fast time scales, measurements for this system
are limited to the Fourier domain.

Numerical studies have demonstrated this structure in the
Duffing equation@17# and the Van der Pol oscillator@18#.
The control parameter in both studies was the frequency of
modulation in the driving term. The carbon dioxide laser
model used in Ref.@19# exhibits a single forward and inverse
period doubling as a function of the detuning between the
center of the emission line and laser cavity. A model for an
erbium doped fiber laser@20# has also shown inverse period
doubling when the concentration of erbium ion pairs in the
fiber core increases. A model of magnetoconvection under-
goes the forward cascade into an aperiodic state followed by
the inverse process as the Rayleigh number is increased@21#.
Similarly in maps, the Bier-Bountis maps@22#, Hénon map
@3#, Gaussian map@9#, and different versions of the cubic
map @4,5,23# possess the property of forward and inverse
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cascades making them candidates for the presence of anti-
monotonicity.

In spite of the numerous experimental observations of the
concurrent cascades, the mechanism that incites this behav-
ior has yet to be demonstrated. Our motivation in this paper
is to investigate this evidence of antimonotonicity. We
present numerical studies and experimental results for the
case of a driven nonlinear electronic resonator. For this sys-
tem, a return map generated from successive piercings of a
Poincare´ section is approximately one dimensional. As a re-
sult, we focus on the response of the return map to variations
in a system parameter. We show that the making and break-
ing of homoclinic tangencies as seen in topologically similar
one-dimensional maps occurs in the resonator@24#. This es-
tablishes that the same mechanism responsible for antimono-
tonicity in one-dimensional maps also occurs in low-
dimensional dynamical systems.

This paper is organized as follows. In Sec. II the geomet-
ric mechanism of dimple formation is outlined. Numerical
results showing the dimple formation in a drivenRLC circuit
are presented in Sec. III. In Sec. IV, the experimental setup is
described. In Sec. V, the experimental observation of
dimples in high iterate maps is presented. These corroborate
the numerical results and display similar behavior to the type
of one-dimensional maps that exhibit antimonotonicity. Sec-

tion VI summarizes our main findings. In the Appendix we
present details about theRLC circuit model.

II. THE DIMPLE FORMATION MECHANISM
IN A ONE-DIMENSIONAL MAP

Curiously, it is more difficult to establish rigorously a
conclusion concerning antimonotonocity for a one-
dimensional map than it is for a two-dimensional one. The
reason is that the one-dimensional map must be noninvert-
ible for chaotic dynamics to occur. However, Dawson, Ko-
çak, and Grebogi@5# have presented a geometric mechanism
that demonstrates contact making and contact breaking ho-
moclinic tangencies for scalar maps. This mechanism is a
dimple formation that occurs in the structure of a high iterate
return map.

We will outline this idea in this section. As a simple yet
instructive review of a homoclinic tangency, consider the
logistic map,

F~xn!5lxn~12xn!, ~2.1!

at the accumulation pointl5lc'3.679. @See Fig. 1~a! at
lc .# At this interesting point the upper and lower chaotic
regions spawned from each branch of the period-2 orbit

FIG. 1. ~a! The monotone creation of orbits is
shown in the logistic map. Only period doubling
and saddle point bifurcations can be observed.
Odd period orbits first begin to appear at the ac-
cumulation pointl5lc'3.679.~b! The destruc-
tion of previously created orbits through inverse
period doublings occurs in the map,
xn115xn

321.8723xn2l asl increases.
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merge. Here according to Sharkovski’s ordering@25#, all or-
bits whose period is a power of 2 have been created and the
odd periods begin to appear.

The logistic map computed for three values ofl that are
below, equal, and abovelc is shown in Fig. 2. The inset is a
close-up of the region around the critical point,c150.5
@dF(xn)/dxn50,xn5c1 ,c2#. The horizontal line indicates
the second preimage,x2'0.920, to the fixed point,p, when
l5lc ,

F22~p,lc!5x2 . ~2.2!

Note that since herep5(l21)/l, increasingl causes an
upward movement inp and a corresponding shift inx2.
However, this displacement is relatively small compared to
the shift in the map. For the map computed atl,lc , there
is no contact between the preimage top and the map. When
l5lc , the map makes tangential contact atc1 with the pre-
image line. At this point, a homoclinic tangency has occurred
since F2(c1 ,lc)5p. An infinite number of orbits follows
from this contact. Forl.lc , two transverse homoclinic
points exist. Now the limitation of unimodal maps is that
only contact making homoclinic tangencies occur. The single
critical point constrains the motion of the map and its for-
ward iterates to always evolve similarly to that seen in Fig. 2.
Correspondingly orbits are only created.

How then does antimonotonicity occur in a one-
dimensional map? Dawsonet al. @4,5# postulated and nu-

merically substantiated that the occurrence of two critical
points simultaneously residing in a chaotic attractor are, in
general, sufficient for antimonotonicity. The two critical
points allow contact breaking homoclinic tangencies that re-
verse the process of the contact making homoclinic tangen-
cies. Consider the one-dimensional scalar map,

F~xn ,l!5lxn~3c
22xn

2!10.099, ~2.3!

where c50.95, and the critical points arec150.95 and
c2520.95 @5#. A bifurcation diagram of this map is shown
in Fig. 1~b!. The map itself is displayed in the inset of Fig. 3.
We want to observe the mapping of the critical point,c1, and
the evolution of the neighborhood surrounding this point as
we vary l. We can expect that here, and in general, after
some number of iterates one critical point,c1, will map into
the other,c2, i.e., F

j (c1 ,lc)5c2. That iterate is 4 when
l5lc'1.019 398,F4(c1 ,lc)5c2. Furthermore, after some
additional number of iterations,c1 will map into the vicinity
of the fixed point. Both statements are due to the ergodic
nature of trajectories in a chaotic attractor. Analogously to
the logistic map, homoclinic tangencies will occur for this
map as it evolves.

The stage is now in place for the formation of dimples.
We investigate the (j11)st forward return map~here
j54) in the neighborhood of the critical pointc1. Figure 3
shows the fifth forward iterate of the map aroundc1, for
three values ofl. At this iterate a quartic critical point exists
at c1 andl5lc . This can be understood by considering the
derivative ofF j11 with respect tox at x5c1. As l is in-
creased abovelc , c1 no longer maps directly intoc2. The
point dimples inwards creating three extrema from the one
extremum. In Fig. 3 forl51.019 395 @the upper curve
marked ~a!#, the map has a parabolic type shape. For
l51.0194 @the middle curve marked ~b!# and
l51.019 405@the lower curve, marked~c!#, the critical point

FIG. 2. A contact making homoclinic tangency occurs in the
logistic map atl'3.679 ~middle plot!. At this value the critical
point maps into the fixed point whose third preimage is indicated by
the horizontal line. Atl53.65 ~lower plot!, the homoclinic tan-
gency has not yet occurred while atl53.7 ~upper plot! two trans-
verse homoclinic points exist. The inset is an enlargement of the
region around the critical point.

FIG. 3. A dimple forms in the fifth forward iterate of the map,
xn115axn(3c

22xn
2)10.099 (c50.95) @5#. Plotted is the map for

a51.019 395~a!, a51.0194~b!, anda51.019 405~c!. These lo-
cal extrema make and break tangential contact with preimages of
the fixed point. This process generates concurrent creation and de-
struction of periodic orbits.
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inflects upwards clearly forming a dimple. There are an in-
finite number of preimages to the fixed point between the
middle and lower curves of Fig. 3. As the map evolves, the
outer two extrema make homoclinic tangencies with these
preimages. However, the inner extremum breaks contact
with these preimages. Antimonotonicity is the result of this
display of contact making and contact breaking homoclinic
tangencies.

III. NUMERICAL INVESTIGATIONS
OF DIMPLE FORMATION IN THE RLC CIRCUIT

A large class of physical systems can be described by
one-dimensional maps. Consequently, the observation of the
dimple formation mechanism in these particular maps is an
important step in providing evidence for the existence of
antimonotonicity. In this section we concentrate our effort on
a nonlinear electronic resonator. Specifically, our aim is to
generate a map from a numerical model of the resonator and
observe whether this map displays the dimple formation
mechanism as described above.

This resonator is a sinusoidally driven electrical circuit
composed of ap2n junction diode in series with an inductor
and a resistor@26,27#. A third order ordinary differential
equation model is derived by considering the diode as a non-
linear capacitor in parallel with a nonlinear resistor@28#. The
dimensionless equations of the model are

İ ~t!5V0sin~t!2V~t!2bI ~t!1Vd , ~3.1!

V̇~t!5G~ I ,V!, ~3.2!

ṫ52p f . ~3.3!

The pertinent terms areI , the current through the resistor,
V, the voltage drop across the diode, andVd , a bias voltage
that serves as the bifurcation parameter. The other terms are
defined in the Appendix.

A computed bifurcation diagram of the current peaks
taken asVd is added to the driving wave is presented in Fig.
4. Here f570 kHz andV052.8 ~dimensionless!. The dia-
gram displays three bands of chaotic regions. Originally in a
period-1 orbit, the resonator period doubles into a chaotic
regime atVd522.62, then inverse period doubles to a
period-2 orbit atVd522.0 V. BetweenVd522.62 and
Vd522.0, the resonator has inverse period doubled out of
chaos to a period-4 orbit atVd522.36, then back into and
out of other regimes.

The resonator undergoes a period doubling cascade back
into chaos onceVd increases above22.0 V. This is followed
by a saddle node bifurcation into a period-3 orbit. Ordinarily
one would expect the system to bifurcate into period-6 and
beyond. However, here an apparent reversal of a tangent bi-
furcation trips the resonator back into a chaotic regime. It
finally returns to a period-1 orbit through reverse bifurca-
tions.

The dominant region of interest is the first band of chaotic
behavior. This is shown in Fig. 4~b!. A myriad of forward
and inverse period doublings along with various periodic
windows are shown in this figure. BetweenVd522.64 and
22.48 a chaotic band exists which was entered through a

period doubling cascade and exited through the inverse pro-
cess. While this diagram is visually indicative of antimono-
tonicity, we investigate this particular region in order to sub-
stantiate the evidence.

We desire to determine if contact making and contact
breaking homoclinic tangencies are occurring. In order to do
so, return maps are extracted for various values ofVd . The
evolution of these maps is studied analogously to the cubic
map above. Figure 5 is a first return map of the current peaks
@the maxima ofI versusI (n11)#, taken forVd522.6. It is
reminiscent of the logistic map except for the folded inward
section on the right-hand side. Hence the map has two criti-
cal points. On closer inspection there is a degree of structure
indicative of a higher dimensional system. A calculation of
the Lyapunov exponents gives a spectrum ofl150.055,
l250, andl3520.234@29#. From these, the Kaplan-Yorke
dimension is 1.24.

Marked on Fig. 5 are pointsc1 throughX5 that show the
forward iterates ofc1. This point is immediately mapped into
the second critical point,c2. After two more iteratesc1 maps
to X5 which is quite near the unstable fixed point of the map,
p. We therefore expect that for some value of offset, a ho-
moclinic tangency will occur asc1 is mapped intop. Ac-
cording to the discussion concerning the cubic map, a dimple
process should begin on the second iterate return map at the
appropriate value ofVd . This dimple formation will also be
displayed in higher iterate return maps. Therefore, we will

FIG. 4. ~a! A prolific display of bifurcation processes is mani-
fested in this numerical bifurcation diagram of the nonlinear elec-
tronic resonator. The maxima of the resonator current are plotted
versus an applied bias voltage.~b! The first chaotic regime in~a! is
expanded. This chaotic region is a candidate for the observance of
both contact making and breaking homoclinic tangencies.

3584 54NEWELL, KOVANIS, GAVRIELIDES, AND BENNETT



look at the evolution of the second return map experimen-
tally below and will study numerically how the critical point
is mapped into the vicinity ofp in a fifth return map here.

A fifth return map withVd522.6 is shown in its entirety
in Fig. 6~a!. In the vicinity of the critical point~marked by
the box!, the map has a parabolic type curve. Figure 6~b! is a
close-up of the boxed area in Fig. 6~a!. In addition to the
map at Vd522.60 ~the central set of points!, maps at
Vd522.62 ~the upper set of points! and Vd522.58 ~the
lower set of points! are also plotted. The horizontal line in
the graph indicates the position of the fixed point. At
Vd522.62,c1 does not yet map into the fixed point. How-
ever, a contact making homoclinic tangency is about to occur
when Vd522.60. Finally atVd522.58 the critical point
maps beyond the fixed point and transversal homoclinic
points exist on both sides ofc1. The bifurcation diagram,
Fig. 4, shows the creation of orbits as the system moves into
a region of fully developed chaos.

Bifurcations out of chaos can be seen further along Fig. 4.
A fifth return map forVd522.54 is shown in Fig. 7~a!.
While it has the same general look as Fig. 6~a!, note that the
boxed region around the critical point is dimpled inwards.
This area is enlarged in Fig. 7~b!. Again three maps are plot-
ted, but now as the offset is increased, the maps dimple and
recede upwards. ForVd522.550 points straddling the criti-
cal point make contact with the fixed point. The map retreats
upwards as the critical point inflects upwards. At
Vd522.532 the homoclinic tangency is breaking. Finally
whenVd522.526 there is no local contact. Figure 4 shows
the destruction of orbits as the resonator period halves to-
wards the period-4 orbit.

IV. EXPERIMENTAL SETUP

Our experimental setup shown in Fig. 8 is composed of a
1N4004 silicon rectifier diode, a 47 mH inductor with an

internal resistance of 368V, and a 330V resistor in series
with the other two components. The resonator is dc biased
and sinusoidally driven,Vd1V0sin 2p f t, by a Hewlett-
Packard programmable function generator~HP3325A). A
LH0002 line driver buffers the function generator from the
resonator and provides a spectrally pure sinusoidal drive
wave. The voltage drop across the resistor,V(t), is amplified
by a low noise Stanford Research Systems SRS560 preamp-
lifier then digitized with a 16-bit resolution 1 megasample
per second Analogic FAST16 digitizer. A personal computer
coordinates the equipment and acquires the incoming data.
Finally, we thermally stabilize the resonator at 3°60.05°C
in a dewar flask. This minimizes the influence of the ambient
temperature on the bifurcation points of the resonator.

We probe the dynamics of the resonator by settingV0 and
then steppingVd while recording time series at each 1 mV
increment. The driving frequency,f , is always kept constant
at 40 kHz. Long 16-bit resolution time series ofV(t) are
acquired, and points in the vicinity of the maxima are ex-
tracted. A cubic polynomial curve fit scaled to the digitizer
resolution is performed to approximate the true maxima. As
a last step in data processing, we histogram the peaks in bins
based on the resolution of the digitizer. This provides a sta-
tistical look at the relative density of peaks. Plots of the
resulting bifurcations,Vr(tpeak) vs Vdc, are then grey scale
coded to represent the density of occurrence. In spite of this
effort, the inevitable noise in the entire arrangement coupled
with the consequences of the universal scaling law for period
doubling bifurcations tends to harness the possibility of di-

FIG. 5. The computed first return map of the resonator is remi-
niscent of the logistic map but folds inward in the upper region. The
central critical point, marked asc1, maps on the next iterate to the
upper critical point,c2. Three iterates later, the mapping takes us to
X5, which is in the vicinity of the fixed point,p. As Vd is varied,
X1 will map to p creating a homoclinic tangency.

FIG. 6. ~a! The numerical fifth return map of the maxima of
I (n) versusI (n15) whenVd520.885 V. The boxed area focuses
attention on the critical point. An enlargement of the boxed area is
shown in ~b!. In addition toVd522.604 V, maps are plotted for
Vd520.89 V andVd520.877 V. The three maps show the mak-
ing of a homoclinic tangency.
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rect observation of high period orbits@30#.

V. OBSERVING THE FORMATION OF DIMPLES

Bifurcation diagrams of the maxima ofV(t) versusVd for
four values ofV0 are shown in Fig. 9. In all cases, when
Vd is low, the diode is predominantly reverse biased and

essentially acts as a high impedance device. At the other end
of the scale, the diode is mostly forward biased and tends to
act as a linear element. This explains the period-1 orbit for
both low and high values of dc offset. In the intermediate
regions depending on the value ofV0, the motion of the
charge carriers in the diode creates the rich dynamical fea-
tures. At very low drive amplitudesV oscillates in a period-
1 orbit regardless of the dc offset,Vd .

At V050.3 V @Fig. 9~a!#, a period doubling bifurcation
occurs whenVd50.189 V. A strongf /2 frequency compo-
nent appears in the Fourier spectrum. The system remains in
this state untilVd50.239 V, at which point an inverse period
doubling occurs. The resonator returns to the period-1 orbit
and the f /2 frequency component attenuates almost com-
pletely. We refer to this as anf /2 bubble@22,9#.

When V050.5 V @Fig. 9~b!#, after the f /2 period dou-
bling, a second period doubling creates anf /4 bubble at
Vd50.17 V. As we increaseVd , two inverse period dou-
blings return the resonator to its period-1 state. At
V050.75 V, Fig. 9~c!, the cascade continues with the appear-

FIG. 7. ~a! The fifth return map of the maxima ofI (n) versus
I (n15) computed forVd520.862 V. ~b! An enlargement of the
boxed area. In addition toVd522.534 V, maps are plotted for
Vd520.867 V andVd520.859 V. These maps indicate the break-
ing of a homoclinic tangency. The extrema of the dimple make and
break contact with the infinite number of preimages to the fixed
point. The result is antimonotonicity.

FIG. 8. The experimental setup is organized around the sinusoi-
dally drivenRLC circuit. Data are acquired with a 16-bit resolution
1 megasample/sec digitizer and stored in the computer. The sine
wave generator and digitizer are controlled by the computer.

FIG. 9. Experimental bifurcation diagrams for different levels of
drive amplitude.~a! At V050.3 V a period-2 bubble forms. Below
this value, the resonator never bifurcates.~b! At V050.5 V the
f /2 bifurcation point has shifted downwards and a period-4 orbit
appears.~c! Two regions of bubbling have appeared as well as a
period-8 orbit by the timeV050.75 V.
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ance of anf /8 bubble atVd50.16 V. We also find that an-
other f /4 bubble appears atVd50.23 V. Bifurcation dia-
grams taken for increasing values of the drive amplitude
would show a series of forward and inverse bifurcations oc-
curring in bands until chaotic states are reached. These peri-
odic bubbles are not limited to the resonator. They can also
be observed in maps@23,22,31,9# and fiber lasers@32#.

Figure 10~a! displays the accumulation of bubbling that
has led to the chaotic bands. It is quite similar to Fig. 4
except for three bubbles that have formed between
Vd50.25 V andVd50.3 V. As in the previous bifurcation
diagrams, the resonator commences with a limit cycle oscil-
lating at f , then undergoes a visiblef /2, f /4, and f /8 period
doubling atVd520.195V,20.106 V, and20.090 V, re-
spectively. The resonator enters a chaotic region that in-
cludes forward and reverse pitchforks. This particular region
betweenVd520.09 V and20.04 V is shown in Fig. 10.
The resonator period doubles into chaos and then appears to
inverse period double aboveVd520.050 V. It subsequently
undergoes a tangent bifurcation atVd520.042 V and then
undergoes a series of period doublings followed by inverse
period doublings into a period-4 orbit aboveVd520.031 V.
As Vd increases above 0.0 V, the system inverse period
doubles back into anf /2 region. Another period doubling
cascade commences whenVd50.132 V. This cascade con-
tinues into a chaotic regime. AtVd50.186 V, a tangent bi-

furcation@7# occurs latching the resonator into anf /3 region.
An f /6 orbit is subsequently born atVd50.245 V. Forward
followed by inverse period doubling bifurcations occur at
higher values ofVd . Then atVd50.295 V, an inverse tan-
gent bifurcation brings the resonator into a chaotic zone. It
then inverse period doubles into the limit cycle at
Vd50.305 V.

The first chaotic region is expanded in Fig. 10~b!. The
structure of the bifurcation diagram indicates that making
and breaking of homoclinic tangencies may be occurring.
We wish to investigate this region and experimentally ascer-
tain if a dimple formation mechanism is responsible. Figure
11~a! shows a first return map taken atVd520.06 V. It is
very similar to the numerically computed map, Fig. 5. The
central critical point,c1, maps directly into the second criti-
cal point. In accordance with the dimple formation mecha-
nism, a quartic critical point atc1 will occur for the second
iterate return map, maxima ofV(n) vs maxima of
V(n12). Consequently we expect to see the beginning of
dimpling in a second return map.

Figure 11~b! is an experimental second return map taken
when Vd520.057 V. Focus on the boxed region. Figure
11~c! shows a close up of the region of points surrounding
c1 for Vd520.064 V, 20.061 V, and20.055 V. The
horizontal line designates the location of the second preim-
age of the fixed point. AsVd is increased, the map pushes

FIG. 10. ~a! A bifurcation diagram when
V053 V. Chaotic bands have emerged as a result
of the bubbling cascade.~b! A zoomed region of
the first chaotic band indicates that created orbits
are destroyed as the resonator moves into af /4
cycle. This region is a candidate for the observa-
tion of homoclinic tangencies.
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downwards towards this point until it roughly makes contact
at Vd520.055 V. This is a strong indication of the contact
making homoclinic tangency. Correspondingly, the bifurca-
tion diagram, Fig. 10, displays a region of orbit creation.

We incrementVd and again extract return maps. These
are quite similar to Fig. 11~a! and ~b! except in the boxed
region. This area is enlarged in Fig. 11~d!. Maps at
Vd520.051 V, 20.047 V, and20.045 V are displayed.
Here the map begins to recede upwards and inflects inwards.
At Vd520.051 V points straddlingc1 make contact with the
preimage. But when Vd520.047 V followed by
Vd520.045 V the map no longer makes contact with this
preimage. This indicates the contact breaking homoclinic
tangency. In this region, the bifurcation diagram shows the
destruction of orbits as the resonator reverse bifurcates to-
wards a period-4 orbit.

On comparison of this dimpling process with that of the
cubic map, Fig. 3, we find that the process is not truly iden-
tical. This arises because of the simple nature of the bifurca-
tion parameter,l, in the cubic map. For the resonator, the
role of the bias voltage is more sublime. The return map
slightly rotates asVd increases and it causes an asymmetry in
the dimple. Nevertheless, it is clear that the return map of the
resonator will make and break contact tangentially with pre-
images to the fixed point of the map. These figures show
solid evidence of the existence of antimonotonicity in the
RLC circuit.

VI. SUMMARY

The substantial number of physical systems that exhibit
both forward and inverse period doubling cascades moti-
vated our study of antimonotonicity. We were specifically
interested in observing the mechanism that incites antimono-
tone behavior. Our investigation focused on a driven nonlin-
earRLC electrical circuit. This particular system has a long
history of study. Though it is experimentally simple to con-
struct, it displays practically all the processes one normally
associates with the study of nonlinear dynamics and chaos.

Numerically, we computed bifurcation diagrams as a
function of an added bias voltage,Vd ~see Fig. 4!. These are
in strong qualitative agreement with experimental results,
Fig. 9, across a large parameter space. They display a com-
plex bubbling process, including forward and reverse pitch-
forks. First return maps, extracted from one particular cha-
otic regime in the bifurcation diagram, are similar to the
logistic map but possess two critical points. This is a conse-
quence of the damped nature of the resonator, which pro-
duces an approximately one-dimensional attractor. As the re-
turn map evolves across the chaotic band, the motion of its
critical points make tangential contact with preimages of the
fixed point establishing a homoclinic tangency. We next
studied a fifth return map in order to observe the evolution of
the critical point in the vicinity of the fixed point. As we
increaseVd , the critical point dimples inward and the map in
this vicinity reverses its direction of motion. The dimpling

FIG. 11. First~a! and second~b! return maps of the maxima ofV(t). ~a! This map is indicative of one-dimensional maps with two critical
points: an essential requirement for dimple formation. In the second return map,~b!, the neighborhood of points surrounding the critical point
~boxed region! is studied in~c! and~d! for dimple formation.~c! AsVd is increased from20.064 V to20.055 V the map pushes downwards
to the second preimage of the fixed point~the horizontal line!. Initial contact with this line shows a contact making homoclinic tangency.~d!
As Vd continues to increase the map dimples upwards and inflects inwards breaking an established homoclinic orbit.
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process leads not only to contact making homoclinic tangen-
cies but also to contact breaking homoclinic tangencies. This
is because the local extrema make and break contact with
preimages of the fixed point. This concurrent process is the
hallmark of antimonotonicity.

Experimentally an electrical circuit possesses a number of
advantages over an optical or chemical system. One has
much greater control over many of the parameters which
influence the behavior. In particular, by controlling the tem-
perature, we were able to place ourRLC circuit in a regime
that was less noisy and high periodic orbits were more easily
captured. We were then able to generate bifurcation dia-
grams and return maps. These diagrams are highly dependent
on the amplitude of the drive signal. For small amplitudes,
the resonator will always reside in a period one orbit. When
the drive amplitude is larger, bubbles of periodic orbits occur
in the bifurcation diagram. As the amplitude is increased,
these bubbles expand into bands of chaotic regions indicative
of antimonotone behavior. For the last case, second return
maps displayed the formation of dimples asVd increased.

The result of our investigation is evidence that homoclinic
tangencies are made and broken through a dimple formation
process analogously to the process that occurs in a one-
dimensional map that possesses two critical points residing
in its chaotic attractor. Since a number of physical systems
can be modeled by such maps, a dimple formation process is
likely to occur there as well.
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APPENDIX

The model of the resonator follows from considering the
diode as a nonlinear resistor and capacitor and then applying
Kirchoff’s laws to the circuit@28#. Its nonlinear resistance
follows from the familiar I -V curve found in rudimentary
electronics texts. The nonlinear capacitive properties follow
from considering the effect an ac signal would have on the
transport carriers in the semiconductor material and their re-
combination around thep-n junction. The result is that cha-
otic behavior arises when the carrier transport times are rela-
tively long. Such is the case for this particular family
~1N400X! of rectifier diodes. In contrast, fast switching di-
odes do not appear to display chaotic behavior in this circuit.

The dynamical equations in dimensionless units are shown
below. They are expressed in terms of a current,I , and a
voltage drop across the diode,V.

dI

dt
5V0sin~t!2V2bI1Vd , ~A1!

dV

dt
5G~ I ,V!, ~A2!

where

G~ I ,V!5
I2g~eaV21!

c1@e
aV1c2~12V!2m#

if V,
1

2
, ~A3!

G~ I ,V!5
I2g~eaV21!

c1FeaV1c2
~b21mV!

b1
G if V>

1

2
, ~A4!

and finally

dt

dt
52p f . ~A5!

The drive amplitudeV0, frequencyf , and dc offsetVd
define the pertinent parameter space. The other parameters
relate to the characteristics of a 1N4004 diode and its oper-
ating temperature. Experimentally, we find that the proper-
ties of diodes vary widely not only from one to another but
also from one day to the next. As a result, the parameter
values found in Table I are generic for the 1N4004 diode.

For our numerical investigation, we used a fourth order
Runge-Kutta integrator. The integration step size for this
work was set at 3000 steps/cycle. The bifurcation starts at a
dc offset that places the resonator in a periodic orbit. For the
first value ofVd , the initial conditions are arbitrary and 2000
time units are integrated to find the attractor before peaks are
recorded. Subsequently the final integration result for the
nth offset is used as the initial conditions of the (n11)st
value. Then only 500 time units are integrated to find the
attractor. This is for speed and also assumes that the dc offset
increment of 0.001 is small enough so that the initial condi-
tions of the integration are always very close to the attractor.
Peaks of the current through the resonator are extracted from
a computed time series and used to create the return maps
and bifurcation diagrams.
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